If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+3x+4=25
We move all terms to the left:
x^2+3x+4-(25)=0
We add all the numbers together, and all the variables
x^2+3x-21=0
a = 1; b = 3; c = -21;
Δ = b2-4ac
Δ = 32-4·1·(-21)
Δ = 93
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{93}}{2*1}=\frac{-3-\sqrt{93}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{93}}{2*1}=\frac{-3+\sqrt{93}}{2} $
| -2+5(-x)=-28 | | 3x=(7-5x | | 7x–3=3x+7 | | 5r=18 | | 4a=21-2a | | 32-10x=28 | | -10-5y=-30 | | 2p+20=-7 | | 9p+20=-27 | | x+(-12)=87 | | 10x^2+12x+4=20 | | -4-11w=-18 | | 127+2x=17 | | 30=5(2x-10) | | y=×+2 | | 0.9/1.2=3/x | | 116+(9x-17)=180 | | 3(3-3y)=45+3y | | 25+10(x+7)-10=75 | | 9x-17)=180 | | -40=10–10s | | (9x+17)=180 | | 1x+4=4x+-8 | | 4(7x+2)=32 | | 2x-3(x-5)+5=24 | | 4x+1=2x–3 | | 28w+28/4=-1 | | 4(6-5x)=-96 | | 4(6-5x)=96 | | 6-4x+3x=2x | | 28w+28=-4 | | 56x4= |